Solutions to tutorial exercises for stochastic processes

T1. X_{t} is Gaussian since it is a linear combination of B_{s+t} and B_{s} and B is Gaussian. Furthermore

$$
\mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[B_{s+t}\right]-\mathbb{E}\left[B_{s}\right]=0,
$$

and for some $t, r>0$ we have

$$
\begin{aligned}
\operatorname{Cov}\left(X_{t}, X, r\right) & =\operatorname{Cov}\left(B_{t+s}-B_{s}, B_{r+s}, B_{s}\right) \\
& =-\operatorname{Cov}\left(B_{t+s}, B_{s}\right)+\operatorname{Cov}\left(B_{t+s}, B_{r+s}\right)-\operatorname{Cov}\left(B_{s}, B_{r+s}\right)+\operatorname{Cov}\left(B_{s}, B_{s}\right) \\
& =-s+s+t \wedge r-s+s=t \wedge r .
\end{aligned}
$$

Lastly, X_{t} is continuous, since B_{t} is continuous. So X_{t} is Brownian motion.
Y_{t} is Gaussian, since it is a rescaling of B_{t} and B is Gaussian. Furthermore $\mathbb{E}\left[Y_{t}\right]=$ $\frac{1}{\sqrt{c}} \mathbb{E}\left[B_{c t}\right]=0$, and for some $t, r>0$

$$
\operatorname{Cov}\left(Y_{t}, Y_{r}\right)=\operatorname{Cov}\left(\frac{B_{c t}}{\sqrt{c}}, \frac{B_{c r}}{\sqrt{c}}\right)=\frac{1}{c}(c t \wedge c r)=t \wedge r .
$$

Finally, Y_{t} is continuous since B_{t} is continuous. So Y_{t} is also Brownian motion.

T2. Let Z_{t} be defined as follows.

$$
Z_{t}= \begin{cases}0 & \text { if } t=0 \\ t B_{1 / t} & \text { if } t>0\end{cases}
$$

where B is standard Brownian motion. Then Z is Brownian motion as well and $\lim _{t \rightarrow 0} Z_{t}=$ 0 almost surely. By applying the change of variables $s:=1 / t$ we find

$$
0=\lim _{t \rightarrow 0} Z_{t}=\lim _{s \rightarrow \infty} \frac{B_{s}}{s} . \quad \text { a.s. }
$$

An alternative is to prove that $B_{t} / t \rightarrow 0$ in L^{2} and subsequently use the martingale convergence theorem.

T3. Since B is almost surely continuous we can write

$$
\int_{0}^{t} B_{s} \mathrm{~d} s=\lim _{k \rightarrow \infty} \frac{t}{k} \sum_{i=1}^{k} B_{i \frac{t}{k}} .
$$

Similarly for points $t_{1}, \ldots, t_{n}>0$ and constants $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ we can write for the linear combination

$$
\sum_{j=1}^{n} \alpha_{j} \int_{0}^{t_{j}} B_{s} \mathrm{~d} s=\lim _{k \rightarrow \infty} \sum_{j=1}^{n} \frac{\alpha_{j} t_{j}}{k} \sum_{i=1}^{k} B_{i \frac{t_{j}}{k}}=: \lim _{k \rightarrow \infty} Z_{k}
$$

Since B is a Gaussian process, Z_{k} has a normal distribution for every $k \in \mathbb{N}$. The above limit is in the almost sure sense, therefore we conclude that $\lim _{k \rightarrow \infty} Z_{k}$ has a normal distribution as well, so that X is Gaussian.
To calculate $\mathbb{E}\left[X_{t}\right]$ we need to apply Fubini's theorem. Therefore we first need to check that $X \in L^{1}$:

$$
\mathbb{E}\left|\int_{0}^{t} B_{s} \mathrm{~d} s\right| \leq \mathbb{E} \int_{0}^{t}\left|B_{s}\right| \mathrm{d} s=\int_{0}^{t} \mathbb{E}\left|B_{s}\right| \mathrm{d} s \leq t^{2}<\infty
$$

where we used Fubini's theorem in the above equality. Now we can calculate $\mathbb{E}\left[X_{t}\right]$:

$$
\mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[\int_{0}^{t} B_{s} \mathrm{~d} s\right]=\int_{0}^{t} \mathbb{E}\left[B_{s}\right] \mathrm{d} s=0 .
$$

Now let $0 \leq s \leq t$. We again use Fubini's Theorem to calculate the covariance:

$$
\begin{aligned}
\operatorname{Cov}\left(X_{s}, X_{t}\right) & =\int_{0}^{s} \int_{0}^{t} \mathbb{E}\left[B_{u} B_{v}\right] \mathrm{d} u \mathrm{~d} v=\int_{0}^{s} \int_{0}^{t} u \wedge v \mathrm{~d} u \mathrm{~d} v \\
& =\int_{0}^{s} \int_{0}^{v} u \mathrm{~d} u \mathrm{~d} v+\int_{0}^{s} \int_{v}^{t} v \mathrm{~d} u \mathrm{~d} v \\
& =\frac{1}{2} \operatorname{ts}^{2}-\frac{1}{6} s^{3} .
\end{aligned}
$$

